Opportunity \#8: Calculus

Feb. 15, 2017

ANSWERS

Routine Questions

1. If $f(x)=x^{2}-3 x+2$, use the definition of derivative to find $f^{\prime}(x)$. Verify your result using the power rule.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-3(x+h)+2\right]-\left[x^{2}-3 x+2\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3 x-3 h+2-x^{2}+3 x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-3) \\
& =2 x-3
\end{aligned}
$$

2. Differentiate using the power rule and other shortcut rules. (You do not need to use the definition.)
a. $\frac{d}{d x}\left(3 x^{3}+\cos x\right)$

$$
=9 x^{2}-\sin x
$$

b. $\frac{d}{d x}\left(\frac{x^{2}}{2}-\frac{2}{x^{2}}\right)$

$$
\begin{aligned}
& =\frac{d}{d x}\left(\frac{1}{2} x^{2}-2 x^{-2}\right) \\
& =x+4 x^{-3} \\
& =x+\frac{4}{x^{3}}
\end{aligned}
$$

3. If $f(x)=\sin x$, what is $f^{(5)}(x)$?

$$
f^{(5)}=\cos x
$$

4. What can we say about $f^{\prime}(x)$ when the graph of $f(x)$...
a. is increasing?

$$
f^{\prime}(x)>0
$$

b. is decreasing?

$$
f^{\prime}(x)<0
$$

c. reaches the top (local max) of a smooth, continuous curve?

$$
f^{\prime}(x)=0 \text { as the value of } f^{\prime}(x) \text { changes from positive to negative }
$$

d. reaches the bottom (local min) of a smooth, continuous curve?

$$
f^{\prime}(x)=0 \text { as the value of } f^{\prime}(x) \text { changes from negative to positive }
$$

5. The IROC of a function at a certain point, $x=a$, is $h \rightarrow 0 \frac{\left[(2+h)^{2}-(2+h)+3\right]-5}{h}$.
a. What is $f(x)$?

$$
f(x)=x^{2}-x+3
$$

b. What is the a-value?

$$
a=2
$$

c. What is $f^{\prime}(a)$?

$$
\begin{aligned}
& f^{\prime}(x)=2 x-1 \\
& f^{\prime}(2)=2(2)-1=3
\end{aligned}
$$

6. The graph of $f(x)$ is shown (next page). For each $f(x)$, sketch $f^{\prime}(x)$.

The graph of $f^{\prime}(x)$ is shown in blue.
a.

Thinking Questions

7. Consider the graph of $y=\frac{e^{x}-1}{x}$, shown below.

a. What is $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}$?

Based on the graph, and with a change in the letter of the variable, we can see that $\lim _{h \rightarrow 0} \frac{e^{h-1}}{h}=1$.
b. Use the properties of exponents to rewrite the expression e^{x+h}. $e^{x+h}=e^{x} e^{h}$
c. Now use the definition of derivative and the results from (a) and (b) to show that $\frac{d}{d x} e^{x}=e^{x}$. $\frac{d}{d x} e^{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{e^{x} e^{h}-e^{x}}{h}$
$=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}$
$=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}$
$=e^{x}(1)$
$=e^{x}$

